

High-Level Design (HLD)
Revision 1.2
Last Updated: 10/10/2002 - 10:13 AM

Panic Handler Enhancements
for Linux 2.4

Primary Author(s): Andrew Cress

Panic Handler Enhancements for Linux 2.4

 ii 10/Oct/02 10:13 AM

Copyright © 2002, Intel Corporation. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, v1.0. See <http://www.opencontent.org/openpub/>.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Names and brands may be claimed as the property of others.

Panic Handler Enhancements for Linux 2.4

 iii 10/Oct/02 10:13 AM

Abstract

This design document describes the Panic Handler Enhancements project for Linux* 2.4 kernels.
This is a key functionality gap in Linux for the carrier-grade and enterprise spaces, where being
able to determine the cause of a panic is critical. In a standard Linux kernel without these
enhancements, if a panic occurs, there may be no trail of evidence at all.

In carrier-grade and many enterprise environments, glass houses or racks of ‘headless’ servers
are managed from a remote site with intervention and personnel only sent onsite when the
remote operations team has detected that it is required. Typically, a software fault would cause
fail-over to a redundant server while the faulting system is rebooted and put back online.

In this environment, it is critical that information that can lead to the cause of the fault be kept
and made available to the remote diagnostic team to determine the reason for the fault so that
corrective actions can be taken.

Implementing this functionality is high on the list of Reliability, Availability, and Serviceability
(RAS) features that the Linux development teams are addressing as part of various open-source
projects to harden Linux for the carrier-grade and enterprise environments. This feature needs to
integrate smoothly with other open-source projects, such as the Kernel Debugger (KDB) and
Linux Kernel Crash Dump (LKCD) projects, to provide the maximum level of serviceability in
the event a panic occurs.

Panic Handler Enhancements for Linux 2.4

 iv 10/Oct/02 10:13 AM

Table of Contents

1. Introduction...5
1.1 Purpose of this Document ..5
1.2 Document Scope..5

2. Assumptions and Dependencies ..5
3. High-level Design ...5

3.1 Design Decomposition ...5
3.2 Internal Components ..7
3.3 Internal Data Structure Map ...9
3.4 Internal Methods ..9
3.5 System Dependencies and File Structures..9
3.6 External Data Structures... 10
3.7 External APIs... 11
3.8 Design Strategies ... 11

3.8.1 Product Installation Strategy .. 11
3.8.2 Initialization and Shutdown Strategies ... 12
3.8.3 Interoperability and Compatibility Support .. 12
3.8.4 Addressing Performance Issues.. 13
3.8.5 Locking and Synchronization Strategy... 13
3.8.6 Buffer Strategy .. 14

3.9 Additional Features Required... 14
Appendix A: References .. 15
Appendix B: Abbreviations, Acronyms and Definitions ... 15

Panic Handler Enhancements for Linux 2.4

 5 10/Oct/02 10:13 AM

1. Introduction

1.1 Purpose of this Document

This High-Level Design (HLD) document specifies the implementation, including inter-
component dependencies, and provides sufficient design detail that any product based on this
HLD will satisfy the product requirements.

1.2 Document Scope

Anyone interested in understanding the Panic Handler Enhancements internal design should read
this document.

2. Assumptions and Dependencies

It is assumed that the system platforms that this software is installed on will support some form
of Intelligent Platform Management Interface (IPMI) functionality. This is the most widely
adopted standard interface for platform management across a variety of vendors. Platforms that
have other types of interfaces would have to implement a platform-specific implementation,
assuming that the firmware supports these management functions.

If the platform does not support IPMI, the bmc_panic kernel changes are inert, but the code is
designed to be portable to another system management interface standard. The Service
Availability Forum (saforum.org) is working on an umbrella API (named SA PI, see appendix A)
that could be used to group IPMI and other system management interfaces under a meta-
standard. When this becomes available, these Panic Handler Enhancements will conform to that
API so that non-IPMI platforms can be integrated more easily.

3. High-level Design

3.1 Design Decomposition

When a kernel panic happens or the watchdog timers expire, it is not possible to send an incident
escalation up to the management middleware layer; these errors have to be escalated by the
kernel prior to rebooting the system. The aim would be to alert the cluster of the failure quicker
than a missed heartbeat, save as much state information as possible for diagnosing the failure,
and initiate a fast reboot.

Panic Handler Enhancements for Linux 2.4

 6 10/Oct/02 10:13 AM

The current kernel panic handler has the following characteristics:
? When a panic occurs, it calls each routine in the panic notifier list. Parameters passed to

each routine are: an event code (always zero), and a panic string.
? After all routines are complete, the kernel panic handler waits for the number of seconds

specified in the panic timeout (exposed via /proc/sys/kernel/panic).
? If the panic timeout is non-zero, then the kernel panic handler reboots the machine after

the panic timeout expires.

To support some of the additional enhancements, the kernel needs a method in the kernel to
communicate with the firmware-level platform management features. Currently, IPMI is the
only open-source interface for this capability, so the current design is targeted for IPMI-based
systems. However, if another platform management interface can be linked into the kernel,
bmc_panic could be modified to use it.

The Panic Handler Enhancements feature will add a module to the panic notifier list which will
do the following actions:

? Log the error condition in the Basic Mode Controller (BMC) System Event Log (SEL)
The IPMI Event Record will be logged in the SEL with a type code of 20h (‘OS Critical
Stop’ type code). As much information as possible will be saved about the panic within
the format of the SEL event message. Note that the SEL persists in firmware, whereas
the Linux* system log (syslog) resides in the file system, either locally or remotely (via
a network)..

? Send a Simple Network Management Protocol (SNMP) trap through IPMI
Have the BMC send an alert (SNMP trap) message to a pre-configured IP address.

? Raise an alarm to the alarms panel
Use IPMI and the BMC to raise a critical alarm to the alarms panel. This turns on one of
the alarm LEDs (CRT, MAJ, MIN) on the front of the chassis, and sets a relay.

? Initiate a system memory dump
Coordinate panic handling with the Linux Kernel Crash Dump (LKCD) project to
properly initiate the memory dump. This theoretically should not require any additional
handling outside the memory dump module.

? Optionally, bring up the kernel debugger to permit remote debugging of the problem
Coordinate panic handling with the Kernel Debugger (KDB) project. This theoretically
should not require any additional handling outside the KDB module.

? Initiate a reboot
Force a reset of the system at the conclusion of a memory dump to restart the system.
This could be handled simply by ensuring that the existing panic timeout is set to a non-
zero value. Or, if that is insufficient, the panic handler could send a Cold or Warm Reset
Command to the BMC. However it is done, the reset should be invoked from the panic
handler after all of the notifier list tasks have been completed (including the memory
dump, if configured).

? Utilities
Add whatever user-space Linux tools are necessary to configure and use the panic
handler enhancements.

Panic Handler Enhancements for Linux 2.4

 7 10/Oct/02 10:13 AM

Due to the nature of the condition(s) that lead to a fatal kernel error, some of these steps may not
be possible, and the module containing these enhancements should take steps to continue on
without further interruption if one of the aforementioned steps cannot be performed. For
example, if the alarms panel LEDs are not present on a given system, this step should be skipped,
but the other steps should still be performed.

Other requirements that were considered but not included in this project are:

? Handling the IPMI Watchdog timer on behalf of the KDB and the Kernel Memory
Dump. The debugger and memory dump interaction with the watchdog timer does not
need to involve the panic handler.

? Retrieving and logging from a kernel memory dump image any kernel messages that
were not logged due to the panic. It is unresolved at this time where to send/store this
additional information, and this information is recorded by the memory dump.

3.2 Internal Components

Table 1: Panic handler components, showing interactions between
firmware, kernel, and user-space

User-space utilities
pefconfig,
showsel,
hwreset,
tmconfig,

etc.

Kernel ipmidrvr
(Intel, valinux*,

or other)

 bmc_panic Kernel panic handler
(notifier_list, panic_timeout)

BMC Firmware
Sensors SEL Alarms Panel BMC LAN Serial EMP

The shaded areas in Table 1 are those covered by the Panic Handler Enhancements feature.

Since it is only called if the kernel has called panic, the bmc_panic kernel module must be
assure that it does not depend on a loadable module for its functions. The bmc_panic module
could theoretically be a loadable module, but due to the possibility of a panic occurring without
the bmc_panic module loaded in physical memory, and the fact that the bmc_panic module
is not very big, the bmc_panic module should be directly linked into the kernel. It would be
simplest for bmc_panic to utilize an IPMI driver (or some future open-source platform
management driver) that was already linked into the kernel, if it exposed an interface that had the
ability not to introduce additional timer waits in processing the commands that bmc_panic
needs. There are several potential Linux IPMI kernel drivers, and they may or may not be
suitable for bmc_panic, so in the current implementation, bmc_panic contains a subset of
the valinux* IPMI driver to perform its tasks, but does not expose any IPMI interfaces outside the

Panic Handler Enhancements for Linux 2.4

 8 10/Oct/02 10:13 AM

module, so that it will not conflict with any normal IPMI modules that may also be loaded. The
bmc_panic does not allocate any new memory after the kernel is loaded, and is assumed to
persist in memory.

The user-space utilities shall be able to use one of the common IPMI drivers that are likely to be
installed on a Linux system, such as the Intel® IPMI (/dev/imb) or the valinux IPMI
(/dev/ipmikcs) drivers. These utilities shall be used to configure bmc_panic functions, as
well as other related administrative functions. Of course, the utilities are run as needed and have
no persistent resources.

Some of these configuration functions could be performed by rebooting to the service partition
and running DOS tools, such as System Setup Utility (SSU). However, there are several issues
with this approach. First, even though they could be performed remotely, the DOS configuration
functions would have to be performed manually, and this is impractical for a large number of
servers. Second, rebooting to DOS takes the server out of service and reduces the availability of
the system. Therefore, implementing Linux command-line utilities allows these functions to be
performed while the Linux OS is running, and also allows them to be automated via a script to
facilitate large numbers of servers.

The following utilities shall be implemented:

? pefconfig
This utility is intended to automatically configure the Platform Event Filter (PEF) table
and the BMC LAN Parameters so that the BMC is ready to send an SNMP Alert over the
LAN (eth0) when events are logged into the SEL. It can also display the values of
parameters. In addition, since the Linux LAN parameters are usually already configured,
this utility tries to retrieve those parameters and use them to automatically set the same
values for the BMC LAN. If the user specifies a specific command-line option, the
pefconfig should override the default values automatically obtained from Linux.
Since some of the BMC IPMI v1.5 systems have 12 pre-defined entries (0-11), the
default PEF table entry used to insert the OS Critical Stop filter entry is offset 12, which
is the next available entry. In a system with greater than or fewer than 12 pre-defined
entries, this offset can be changed from the command-line options.

? showsel
This utility should show the SEL records from the BMC, and should display them with
textual descriptions for each event. Also, it is periodically necessary to clear the event
log to prevent it from filling up and rejecting new events; therefore, the utility should
have an option to clear the log. Many customers may want to consolidate the SEL log
with the standard Linux log. To accomplish this, the utility should have the capability to
read any SEL records not already saved, and write them to the syslog.
This utility decodes the various types of records similar to the way that the Direct
Platform Control (DPC) SEL feature (part of ISC Remote Console) does. In addition,
showsel decodes the new OS Critical Stop messages and displays the available panic
string characters in a readable format.

? hwreset
This utility should be able to perform a hardware (chassis) reset of the system, or a power

Panic Handler Enhancements for Linux 2.4

 9 10/Oct/02 10:13 AM

down. It should also have an option to allow the user to initiate a reboot into the service
partition.

? tmconfig
This utility should configure the firmware to support several types of serial parameter
configurations. First, it should set up the serial parameters to support shared Basic-Mode
IPMI and BIOS Console Redirection. Next, it should set up the serial parameters to
support shared Terminal Mode IPMI and BIOS Console Redirection. Terminal Mode is
defined in the IPMI v1.5 specification, and will be supported in a future release of
firmware.

3.3 Internal Data Structure Map

The IPMI v1.5 specification, Table 36-3, defines the sensor types for SEL records, as used by
showsel and the bmc_panic kernel module.

The IPMI v1.5 specification, Table 15-2, defines the PEF table entries, as used by pefconfig.

The IPMI v1.5 specification, Table 19-4, defines the LAN Configuration Parameters, as used by
pefconfig.
The IPMI v1.5 specification, Table 20-4, defines the Serial Configuration Parameters, as used by
tmconfig.

The IPMI v1.5 specification, Table 18-13, describes the Master Write-Read Command used to
access the Alarms Panel from the bmc_panic kernel module.

The IPMI v1.5 specification, Table 22-4, describes the Chassis Control Command used to reset
the system by hwreset and bmc_panic.

3.4 Internal Methods

All IPMI calls in bmc_panic pass through a common IPMI transfer function for timed
requests and responses. All IPMI methods within bmc_panic must be static (not
public/exposed), unless uniquely defined for necessary communication with other critical kernel
modules (like panic.c).

For the utilities, all IPMI requests and responses shall pass through a common ipmi_cmd()
routine so that this routine can format them appropriately and direct them to whichever IPMI
driver is detected when the utility was loaded. A simple IPMI command will be issued at startup
to check /dev/imb (and if unsuccessful, /dev/ipmikcs) to determine which driver is
present. After detection, a flag is set to use the selected driver. Support for both devices will be
present in the code for each utility.

3.5 System Dependencies and File Structures

Panic Handler Enhancements for Linux 2.4

 10 10/Oct/02 10:13 AM

The bmc_panic module is linked into the kernel under /drivers/char as a “misc”
character module. If the kernel configuration defines CONFIG_BMCPANIC as ‘y’, then the
misc.c module must call an initialization routine from the bmc_panic module.

The IPMI driver, either Intel or valinux, is needed by the utilities, and will have a device node
that resides in the /dev directory. The Intel driver device node is called /dev/imb, while the
valinux device node is called /dev/ipmikcs. The utilities are executables and can reside in
any suitable directory.

3.6 External Data Structures

In order for the system to reboot properly after a panic, the panic_timeout must be set. The
default setting of zero (0) means an infinite timeout. This value is counted in seconds, and a
normal value for bmc_panic and LKCD is five seconds. This can be set via the /proc
interface as /proc/sys/kernel/panic, or it can be set via the lilo “append” command
as “panic=5”. Note that the panic_timeout is not preserved across reboots. When the Panic
Handler Enhancements feature is installed, the default behavior should be to set this timeout via
lilo.conf so that it is set even if a panic occurs while lilo is loading the OS.

The bmc_panic kernel module inserts itself into the panic_notifier_list when the
module is loaded, so that it will be notified, along with other handlers in the list, when a panic
occurs. The kernel panic handler core (panic.c) controls each of the handlers in the panic
notifier list. It invokes each of the handlers: bmc_panic, LKCD, and/or KDB. When all of the
active handlers in the list have completed their tasks, the panic timeout starts. By default, some
Linux distributions (for example, Red Hat*) set the panic timeout to zero (infinite). When either
panicsel or LKCD is installed, the panic timeout is set to five seconds. This means that
once all the handlers are done, the system reboots in five seconds. When KDB is one of the
handlers, the timer doesn't start until ‘go’ or ‘reboot’ is entered. The following code illustrates
the format of the panic notifier list structure.

struct notifier_block {
 int (*notifier_call)(struct notifier_block *self,
 unsigned long, void);
 struct notifier_block next;
 int priority;
}
/* Few, if any, list members should set the priority to 0
(highest). Bmc_panic sets this value to 200, so that it
comes after more critical list members, like LKCD. */

The bmc_panic module also needs to view the panic_string, so this variable should be
exported by panic.c.

Panic Handler Enhancements for Linux 2.4

 11 10/Oct/02 10:13 AM

3.7 External APIs

The only external APIs exposed are those documented in the IPMI v1.5 specification.

3.8 Design Strategies

There was a proof-of-concept Panic Handler Enhancements kernel patch that used Intel IPMI
driver code; it was configured as a loadable module. This worked, but had several design flaws.
It had license conflicts with the GPL kernel source, and it exposed scenarios where the loadable
module might not be loaded and could fail to load when a panic had occurred. Therefore, in the
initial release, part of a GPL valinux IPMI driver was integrated into the Panic Handler
Enhancements kernel module (bmc_panic). If enabled, the configuration parameter
(CONFIG_BMCPANIC) links the module into the kernel. The kernel configuration should not
present the user with the option to make bmc_panic a loadable module.

This design could be simplified to use interfaces exposed by a common IPMI driver if it were
linked into the kernel and provided the ability not to introduce additional timer waits in
processing the commands that bmc_panic needs. In a future kernel release, it is expected that
this will be possible, allowing the bmc_panic module to remove the valinux IPMI code and use
the common IPMI code. It is also possible in the future to modify the bmc_panic module to use
another platform management interface, if the platform had an open-source driver which
supported similar functions.

Also, due to the reasons outlined in Section 3.2, the scope of the utilities was enlarged so that
this Panic Handler Enhancements feature could be configured and used without the need for
DOS utilities such as SSU.

3.8.1 Product Installation Strategy

When the kernel is installed, either from a binary RPM or from kernel source, the
bmc_panic module will be part of the kernel. The CONFIG_BMCPANIC kernel
configuration parameter should be enabled by default. The BMC LAN features also need
to be configured, either by a DOS SSU program, or by the pefconfig Linux utility
provided. For more details, see the panicsel README included with the software.

The target systems will normally have Intel® Server Control (ISC) software available on
the Resource CD and this software (or at least an IPMI driver) should be installed before
the Panic Handler utilities (also an RPM) are installed. When these utilities are installed,
the pefconfig utility and any other configuration settings will be changed to allow the
Panic Handler Enhancements to perform as many of the functions as are supported by the
system.

Panic Handler Enhancements for Linux 2.4

 12 10/Oct/02 10:13 AM

3.8.2 Initialization and Shutdown Strategies

Upon initialization of the kernel, the miscellaneous char devices are initialized
(drivers/char/misc.c), and the bmc_panic init routine is registered in the
panic_notifier_list.

Shutdown is irrelevant to the bmc_panic module, since it is part of the kernel. During
a panic, however, it is assumed that other modules (such as software RAID, SCSI, and
LKCD) are more important than bmc_panic, so its notifier priority is purposely set to
200 to ensure that it follows all of the critical modules.

3.8.3 Interoperability and Compatibility Support

Because the bmc_panic kernel module is self-contained and resides in the kernel
source tree, it does not have compatibility issues in the kernel. However, it requires IPMI
support in the firmware of the target system. If bmc_panic is enabled in the kernel,
and the target system does not support IPMI, an error message will be sent to the log; the
bmc_panic will not harm other kernel operations.

3.8.3.1 Target hardware/software environment

The target platform for this software is a Linux 2.4 OS on a server that supports IPMI.
This software makes use of the IPMI interface and requires IPMI support in the platform
firmware (i.e. BMC).

It is assumed that the IPMI v1.5 compliant firmware (BMC) supports the following
features: sensors, SEL, BMC LAN, and serial Emergency Management Port (EMP).
Also, some platforms will have alarm panel LEDs (Critical, Major, Minor, and Power).
For a given system, the version of BMC firmware may be important. For instance, with
the Intel® TSRLT2/TSRMT2 systems, the version of BMC must be version 54 or greater,
and the SSU, if used, must correspondingly be version 1.R.3 or greater. See the
panicsel README for more details. If one or more of the features is not supported by
the IPMI platform, that step will be skipped when a panic occurs.

3.8.3.2 Imported Interfaces

The Panic Handler utilities require that a version of an IPMI driver be installed. Intel’s
IPMI driver (ipmidrvr or /dev/imb) comes as part of the ISC package for Intel®
servers. It is planned to be released as an open-source driver, and can be obtained from
http://www.intel.com/design/servers/ipmi/tools.htm. The valinux IPMI driver
(/dev/ipmikcs or /dev/ipmi/kcs), written by San Mehat, is available as an
open-source kernel module. If an IPMI driver on a given Linux system supports the
/dev/imb or /dev/ipmikcs interfaces, the Panic Handler utilities can use it.

Panic Handler Enhancements for Linux 2.4

 13 10/Oct/02 10:13 AM

3.8.3.3 Exported and Defined Software Interfaces

The interfaces to this feature are through the command-line utilities. Corresponding
‘man’ pages will be delivered with the utilities, and will describe in detail how to use
each utility.

3.8.3.4 Product Standards

Platforms must support the IPMI specification with the current design. It is possible, if a
common API can be defined to include other system management interfaces, and their
access methods can be included in the GPL Linux kernel, that non-IPMI platforms could
then be included. Currently, if a vendor wished to use this feature on a non-IPMI
platform, new code would have to be written to substitute for the logging and alerting
function calls in bmc_panic.

3.8.4 Addressing Performance Issues

The bmc_panic does not impact the overall performance of the system during normal
operations. If a panic occurs, system performance is secondary to saving the information
and quickly notifying an administrator. Two performance considerations need to be
addressed, however:

1) How much latency is there between the occurrence of a kernel panic and notification
to the network administrator?

2) How much time does it take for the server to become operational after a panic occurs,
assuming a reboot is sufficient to accomplish this?

3.8.5 Locking and Synchronization Strategy

There are two concerns related to synchronization:

1) Ensuring that critical modules get priority when a system panic happens. The
bmc_panic should not prevent LKCD or software RAID from getting enough
priority to function.

2) Ensuring that the internal IPMI driver within bmc_panic does not cause conflicts
during normal operations with the regular IPMI driver. The BMC serializes input
requests and can handle multiple sessions, but the bmc_panic module only uses the
IPMI interface to the BMC in two instances, initialization and panic, so it should not
conflict with normal operations. This issue would be simplified if a suitable IPMI
driver were linked into the kernel so that bmc_panic could use it instead.

Panic Handler Enhancements for Linux 2.4

 14 10/Oct/02 10:13 AM

3.8.6 Buffer Strategy

The bmc_panic module uses one buffer for requests and one for responses. Since the
IPMI commands are sequential, this does not pose a problem.

The Panic Handler utilities also use one buffer for requests and one for responses. Since
the IPMI commands are sequential, this does not pose a problem. The utilities select
which IPMI driver to use at run-time, so when separate command buffers are needed for
different drivers, these buffers are allocated from the subroutine’s stack.

3.9 Additional Features Required

Table 2 shows some additional requirements for the Panic Handler Enhancements feature that
were added after its initial release.

Any proposed future enhancements will be included in the project TODO list.

Table 2: Correlation of requirements to HLD specifications

Requirements Design Implementation
Linux* Panic Handler
Enhancements shall provide
additional configurable
features to the default panic
handler.

The bmc_panic kernel module is configurable in the kernel
configuration parameters (CONFIG_BMCPANIC). It should be
enabled by default on all Linux platforms that support IPMI.

One of the following panic
actions shall be initiated:

? Reboot (soft or hard)
? Power down
? Power cycle

The default for the bmc_panic kernel module is to perform a
reset of the system (soft reboot). Options to take other actions are
configurable via kernel configuration parameters that are linked to
the CONFIG_BMCPANIC parameter governing this feature.
Each type of reboot (soft reboot, hard reboot, power cycle) clears
an additional level of firmware, BIOS and adapter buffers, but
then requires some additional time to re-initialize them on the
way back up.
It would be possible to implement a /proc interface to
dynamically modify this action; however, this does not seem
necessary, since the hwreset utility already allows the user to
perform these actions under Linux.

Documentation -
Panic Handler shall provide
a detailed specification that
documents all configuration
options and the behavior of
each feature.

The User Guide for the Panic Handler Enhancements feature shall
describe all configuration options and their behavior.

Panic Handler Enhancements for Linux 2.4

 15 10/Oct/02 10:13 AM

Appendix A: References

IPMI Specification, Version 1.5: http://www.intel.com/design/servers/ipmi/index.htm

The Panic Handler Enhancements open-source project: http://panicsel.sourceforge.net

The Service Availabilty Forum Platform Interface specification: http://www.saforum.org

Appendix B: Abbreviations, Acronyms and
Definitions

Abbreviation Description
bmc_panic The name of the Panic Handler Enhancements kernel module, which

communicates to the BMC via IPMI commands.

BMC Baseboard Management Controller – The BMC processes firmware-level
functions, as well as many server management functions.

DPC Direct Platform Control – A server remote management utility that
interacts directly with the BMC firmware from a remote system. It is
packaged with ISC.

EMP Emergency Management Port – This serial port can be configured for
access to server management functions via the SSU or Panic Handler
utilities, such as tmconfig.

GPL GNU Public License – The default license for Linux software, required
for most Linux kernel modules.

HLD High Level Design

IP Internet Protocol

IPMI Intelligent Platform Management Interface

ipmidrvr Name of the Intel® IPMI driver RPM.

ISC Intel Server Control – An Intel® server management daemon that runs on
the system being managed to provide sensors and control to remote
management applications. This software is provided with Intel® servers
on the accompanying Resource CD.

KDB Kernel Debugger. See http://systemras.sourceforge.net/

LED Light-Emitting Diode

LKCD Linux Kernel Crash Dump. See http://systemras.sourceforge.net/

Panic Handler Enhancements for Linux 2.4

 16 10/Oct/02 10:13 AM

Abbreviation Description
OS Operating System

PEF Platform Event Filter

RAID Redundant Array of Inexpensive Disks

RAS Reliability, Availability, and Serviceability

RPM RPM Package Manager

SCSI Small Computer System Interface

SEL System Event Log

SNMP Simple Network Management Protocol

SSU System Setup Utility – A DOS program used to configure firmware and
BIOS parameters. It is provided with Intel® servers on the accompanying
Resource CD.

valinux The name of a company that developed an open-source IPMI driver,
currently maintained by San Mehat.

